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Modern Sensor Systems — multiple sensors installed on mobile platforms
-- Environmental monitoring and prediction
-- Landmine detection and identification
-- Monitoring of urban environments (disaster relief, security, ..)

Traditional paradigm: sensor information is used as feedback to the vehicle in
order to support the vehicle navigation

New paradigm: the sensor motion is planned in view of the expected
measurement process, in order to support the sensing objectives

IGERT WISeNet Research Area: Geometric Sensor Path Planning

-- Address couplings between sensor measurements and sensor dynamics
-- Plan sensor motion to optimize sensing objectives
(e.g., sensor coverage, detection, classification, tracking..)
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* The sensor is characterized by a field-of-view (FOV), represented by a discrete
geometric object, and by a joint probability density or mass function (PDF or PMF):

Pl ) = p( 2k | i J0(Er )p(ye) Probabilistic measurement model

* The vehicle is characterized by a discrete geometric object and a dynamic equation.

x(t)= flx(t),u(t),w(t).t] Vehicle equation of motion
Examples:
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« In classical robot path or motion planning, a discrete geometric object A (the robot)
must avoid intersections (collisions) with multiple objects (obstacles) B,, B,, ...

« In sensor path planning, a discrete geometric object S (the sensor’s FOV) must
intersect (measure) multiple objects (targets) 7, 7T, ...

Robot path planning: Sensor path planning:
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Measurements

Kinodynamic model:  X(¢) =f[x(?),u(),w(?),7] 4
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The sensor classification performance, typically, is not available in closed-form.

Target Information Value or Information Gain:

Expected Entropy Reduction (EER) [Cai, Ferrari 2007]%  Advantage: additive,
AH(&:2|2) = H(E| )= Y [HE|2)p(z| )] YImeme nonmone -
zeZ

N7 #0 = Measurements, z

3 G. Zhang, S. Ferrari, and C. Cai, “A Comparison of Information Functions and Search Strategies for Sensois
Planning in Target Classification,” I[EEE Transactions on Systems, Man, and Cybernetics - Part B, in press.
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Ground mobile sensors for fixed target classification
v' Cell decomposition

v' Information potential function

v' Probabilistic information roadmap method

Ground mobile sensors for target tracking and surveillance
v’ Particle filter-based method

v Disjunctive programming

Underwater mobile sensors for cooperative target tracking
v’ Optimal control

Air mobile sensor deployed for fixed target detection and classification
v’ Approximate dynamic programming (ADP)

Air and ground sensors for target detection, tracking, localization, and pursuit

v" Cell decomposition, probabilistic roadmap method, and particle filter-based method
Computer games (CLUE, Ms. Pacman, and Marco Polo)

v' Cell decomposition

v' Influence diagrams

v’ Reinforcement learning, and ADP
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Indoor Monitoring and Surveillance

Single agent Multiple agents
/ o

Mobile, autonomoys/ =

"

. . Sensors
Wireless communication
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For a given layout W c %3 with r targets and n obstacles and a given joint probability
mass function p(z, &, A), find the obstacle-free path that minimizes the distance
traveled by a robot 7 between two configurations ¢, and g, and maximizes the total
information value, for a sensor with field-of-view S, installed on 4.

S. Ferrari and C. Cai, “Information-Driven Search Strategies in the Board Game of CLUE®,” JEEE
Transactions on Systems, Man, and Cybernetics - Part B, Vol. 39, No 3, June 2009.
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- : Med. EER ' : Classified

: High EER : Low EER : Undetected
Targets ' ' Obstacles: @
' : Detected

Sensors must also avoid collisions with other moving sensors, based on knowledge of 9
their instantaneous configuration.

\“-,EPA GMAP Remote Emissions Measurement

Environmental Protection
Agency

GMAP-REM Concept:

Detect and quantify emissions

of a specific species froma  [Ems <
large area or distributed o pensteEmisaens <

source via mobile sampling
and plume dispersion

diagnostics.

Example projects:

1. Detection of methane emissions from distributed oil and gas
production wells using a Direct Assessment (DA) approach

2. Quantification of methane emissions from landfills using an
acetylene tracer via the Tracer Correlation (TC) approach

H




Detection and Quantification Fugitive Emissions from Colorado Oil and Gas Production Operations Using Remote
Monitoring, E. Thoma, et al., Air & Waste Manage Assoc. Conf. - June 22-25, 2010 - Calgary, Alberta, Canada




B EPA Large area source measurements
hed X & GMAP REM TC

Environmental Protection
Agency

* Release tracer gas from strategic

locations within the facility tracer release point(s)

* Use mobile sampling platform to map
target source and tracer plumes

large area |
source source plume

/

¢ Calculate dilution ratio based on known tracer plume

tracer rate

* EPA method development research
Waste Management CRADA #372-A-08,
EP-C-07-15 WA 2-10

Clargel, bekgnd

| Qmwer meer = Cu-am, bekgnd

Quantifying Methane Fluxes Simply and Accurately, The Tracer Dilution Method, C. W. Rella, E. R. Crosson, et al.
European Geophysical Union Meeting, 2—7 May 2010, Vienna, Austria.

Methane Emissions at Nine Landfill Sites in the Northeastern United States, B.W. Mosher, P.M. Czepiel, et al.
Environ. Sci. Technol. 1999, 33, 2088—2094.

Measurements of Methane Emissions from Landfills Using a Time Correlation Tracer Method Based on FTIR
Absorption Spectroscopy, B. Galle, B.; J. Samuelsson, et al. Environ. Sci. Technol. 2001, 35, 21-25.

wEPA Oil and gas production: distributed sources

United States
Environmental Protection
Agency
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Wireless Intelligent Sensor Networl;s : S ; 1
DU.ke IGERT WISeNet ,

WISeNet Graduate Training at Duke

WISeNet trainees contribute to the development of intelligent sensor
systems that process, store, and learn from data so as to improve
their ability to gather information over time. By participating in
WISeNet laboratory and field experiments, trainees also contribute
first hand to unprecedented observations of environmental and
ecological processes, and more effective and reliable use of sensors
for defense and national security.

WISeNet is currently accepting applications

Trainees must be enrolled in a Ph.D. program in one of the participating
departments at Duke University. Duke students who are interested in
applying should request application material from the WISeNet Program
Director, Prof. Silvia Ferrari (Email: webmaster@lisc.pratt.duke.edu). Non-
Duke students interested in WISeNet are strongly encouraged to apply to
the graduate program of interest through Duke Graduate School
(http://gradschool.duke.edu/admissions/).

For more information visit: http://wisenet.pratt.duke.edu/

Pratt School of Engineering | Nicholas School of the Environment
Trinity College of Arts & Science | Duke University
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