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Modern Sensor Systems – multiple sensors installed on mobile platforms

-- Environmental monitoring and prediction

-- Landmine detection and identification

-- Monitoring of urban environments (disaster relief, security, ..)

Traditional paradigm: sensor information is used as feedback to the vehicle in 

order to support the vehicle navigation 

New paradigm: the sensor motion is planned in view of the expected 

measurement process, in order to support the sensing objectives

IGERT WISeNet Research Area: Geometric Sensor Path Planning

-- Address couplings between sensor measurements and sensor dynamics

-- Plan sensor motion  to optimize sensing objectives

(e.g., sensor coverage, detection, classification, tracking..)

Introduction
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• The sensor is characterized by a field-of-view (FOV), represented by a discrete 
geometric object, and by a joint probability density or mass function (PDF or PMF): 
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Vehicle equation of motion

• The vehicle is characterized by a discrete geometric object and a dynamic equation.

))p(λ)p(ξ,λξzp(),λ,ξp(z kkkkkkkk 

       ,t]t,wt,utf[xtx 

Sensor Model

Probabilistic measurement model

Examples:
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• In classical robot path or motion planning, a discrete geometric object A (the robot) 
must avoid intersections (collisions) with multiple objects (obstacles) B1, B2, …

A

Kinodynamic model:         ],,,[ ttttt wuxfx 

Duality of Sensor and Robot Path Planning

Robot path planning:

B

A B 0

Measurements

• In sensor path planning, a discrete geometric object S (the sensor’s FOV) must 
intersect (measure) multiple objects (targets) T1, T2, …

S

Sensor path planning:

T

S  T 0
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Expected Entropy Reduction (EER) [Cai, Ferrari 2007]§

Target Information Value or Information Gain:

Advantage: additive, 
symmetric, non-myopic, ..
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Sensing Performance Function

The sensor classification performance, typically, is not available in closed-form. 

Expected Discrimination Gain (EDG)

Rényi information divergence (or -divergence)

→ 1, discrimination function;  = 0.5, Hellinger affinity distance
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, .. and so on.

§G. Zhang, S. Ferrari, and C. Cai, “A Comparison of Information Functions and Search Strategies for Sensor 
Planning in Target Classification,” IEEE Transactions on Systems, Man, and Cybernetics - Part B, in press. 

Measurements, z

S T
S  T 0
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Ground mobile sensors for fixed target classification
 Cell decomposition
 Information potential function
 Probabilistic information roadmap method

Ground mobile sensors for target tracking and surveillance
 Particle filter-based method
 Disjunctive programming

Underwater mobile sensors for cooperative target tracking
 Optimal control

Air mobile sensor deployed for fixed target detection and classification
 Approximate dynamic programming (ADP)

Air and ground sensors for target detection, tracking, localization, and pursuit
 Cell decomposition, probabilistic roadmap method, and particle filter-based method
Computer games (CLUE, Ms. Pacman, and Marco Polo)
 Cell decomposition
 Influence diagrams
 Reinforcement learning, and ADP

Information-driven Sensor Path Planning
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Single agent

Mobile, autonomous

Sensors
Wireless communication

Application Example

Indoor Monitoring and Surveillance
Multiple agents
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Treasure Hunt Problem

For a given layout W with r targets and n obstacles and a given joint probability 
mass function p(z, , ), find the obstacle-free path that minimizes the distance 
traveled by a robot A between two configurations q0 and qf, and maximizes the total 
information value, for a sensor with field-of-view S, installed on A.

3

S. Ferrari and C. Cai, “Information-Driven Search Strategies in the Board Game of CLUE®,” IEEE 
Transactions on Systems, Man, and Cybernetics - Part B, Vol. 39, No 3, June 2009. 



5

9

Multiple Sensors, Multiple Targets

: High EER

: Med. EER

: Low EER

: Detected

: Undetected

: Classified
Targets Obstacles:

Sensors must also avoid collisions with other moving sensors, based on knowledge of 
their instantaneous configuration.

1010

GMAP Remote Emissions Measurement

GMAP-REM Concept: 
Detect and quantify emissions 
of a specific species from a 
large area or distributed 
source via mobile sampling 
and plume dispersion 
diagnostics.

Example projects: 
1. Detection of methane emissions from distributed oil and gas 
production wells using a Direct Assessment (DA) approach
2. Quantification of methane emissions from landfills using an 
acetylene tracer via the Tracer Correlation (TC) approach 

Geospatial 
Measurement of Air 

Pollution 
(GMAP)

Source Impact 
Measurement

(SIM)

Remote Emissions 
Measurement (REM)

Tracer Correlation 
(TC)

Direct Assessment 
(DA)



6

1111

Mobile sampling vehicle

3D sonic anemometer

Mast: 1.5 m to 6 m 

High res GPSSampling port

Compact met station

8-hour battery capacity

Cavity ring-down 
methane analyzer

3
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Detection and Quantification Fugitive Emissions from Colorado Oil and Gas Production Operations Using Remote 
Monitoring, E. Thoma, et al.,  Air & Waste Manage Assoc. Conf. - June 22-25, 2010 - Calgary, Alberta, Canada 

Fugitive Location and Measurement 

6
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Large area source measurements
GMAP REM TC

• Release tracer gas from strategic 
locations within the facility 

• Use mobile sampling platform to map 
target source and tracer plumes 

• Calculate dilution ratio based on known 
tracer rate

• EPA method development research                  
Waste Management CRADA #372-A-08,        
EP-C-07-15 WA 2-10 target target target, bckgnd

tracer tracer tracer, bckgnd

Q C C

Q C C






large area 
source 

Wind

source plume

tracer plume

tracer release point(s)

Quantifying Methane Fluxes Simply and Accurately, The Tracer Dilution Method, C. W. Rella, E. R. Crosson,  et al. 
European Geophysical Union Meeting, 2–7 May 2010, Vienna, Austria.

Methane Emissions at Nine Landfill Sites in the Northeastern United States, B.W. Mosher, P.M. Czepiel, et al.  
Environ. Sci. Technol. 1999, 33, 2088–2094.

Measurements of Methane Emissions from Landfills Using a Time Correlation Tracer Method Based on FTIR 
Absorption Spectroscopy, B. Galle, B.; J. Samuelsson, et al. Environ. Sci. Technol. 2001, 35, 21-25.
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Oil and gas production: distributed sources

EPA EP-C-09-27, Greeley CO, Nov. 2009

Denver CO

> 25,000 active wells

4

Denver CO

> 25,000 active wells
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WISeNet Graduate Training at Duke

WISeNet trainees contribute to the development of intelligent sensor
systems that process, store, and learn from data so as to improve
their ability to gather information over time. By participating in
WISeNet laboratory and field experiments, trainees also contribute
first hand to unprecedented observations of environmental and
ecological processes, and more effective and reliable use of sensors
for defense and national security.

WISeNet is currently accepting applications

Trainees must be enrolled in a Ph.D. program in one of the participating
departments at Duke University. Duke students who are interested in
applying should request application material from the WISeNet Program
Director, Prof. Silvia Ferrari (Email: webmaster@lisc.pratt.duke.edu). Non-
Duke students interested in WISeNet are strongly encouraged to apply to
the graduate program of interest through Duke Graduate School
(http://gradschool.duke.edu/admissions/).

For more information visit: http://wisenet.pratt.duke.edu/

Pratt School of Engineering | Nicholas School of the Environment 
Trinity College of Arts & Science | Duke University 



9

17

References

S. Ferrari, R. Fierro, and T. A. Wettergren, Modeling and Control of Dynamic Sensor Networks, CRC 
Press, Boca Raton, FL, ISBN 1439866791, scheduled to appear December 2012.

S. Ferrari, G. Zhang, and C. Cai, “A Comparison of Information Functions and Search Strategies for Sensor 
Planning," IEEE Transactions on Systems, Man, and Cybernetics - Part B, Vol. 42, No. 1, 2012.

N. Bezzo, R. Fierro, A. Swingler, and S. Ferrari, “Mobile Router Networks: A Disjunctive Programming 
Approach,” International Journal of Robotics and Automation, Vol. 26, No. 1, pp.13-25, 2011.

S. Ferrari and G. Daugherty, "A Q-Learning Approach to Online Unmanned Air Vehicle (UAV) for Target
Detection and Classification," Journal of Defense Modeling and Simulation, Vol. 9, pp. 83-92, 2011.

G. Foderaro, V. Raju, and S. Ferrari, “A Model-based Approximate λ-Policy Iteration Approach to Evasive 
Path Planning and the Video Game Ms. Pac-Man,” Journal of Control Theory and Applications, Vol. 9, No. 
3, pp. 391-399, 2011.

S. Ferrari, G. Zhang, and T. A. Wettegren, “Probabilistic Track Coverage in Cooperative Sensor Networks,” 
IEEE Transactions on Systems, Man, and Cybernetics – Part B, Vol. 40, No. 6,  pp.1492-1504, 2011.

W. Lu, G. Zhang, S. Ferrari, R. Fierro, and I. Palunko “An Improved Particle Filter Approach for Multiple
Target Detection and Tracking,” Proc. SPIE Conference, Orlando, FL, 2011.

S. Ferrari, G. Foderaro, and A. Tremblay “A Probability Density Function Approach to Distributed Sensors
Path Planning,” Proc. IEEE Conference on Robotics and Automation, Anchorage, AK, 2010.

S. Ferrari and G. Foderaro, “A Potential Field Approach to Finding Minimum-Exposure Paths in Wireless
Sensor Networks,” Proc. IEEE Conference on Robotics and Automation, Anchorage, AK, 2010.

A. Swingler and S. Ferrari, “A Cell Decomposition Approach to Cooperative Path Planning and Collision
Avoidance,” Proc. IEEE Conference on Decision and Control, Atlanta, GA, 2010.

18

References

B. Bernard and S. Ferrari, “A Geometric Transversals Approach to Track Coverage of Maneuvering
Targets,” Proc. IEEE Conference on Decision and Control, Atlanta, GA, 2010.

G. Foderaro and S. Ferrari, “Necessary Conditions for Optimality for a Distributed Optimal Control
Problem,” Proc. IEEE Conference on Decision and Control, Atlanta, GA, 2010.

W. Lu, G. Zhang, and S. Ferrari, “A Randomized Hybrid System Approach to Coordinated Robotic Sensor
Planning,” Proc. IEEE Conference on Decision and Control, Atlanta, GA, 2010.

S. Ferrari and G. Daugherty, "A Q-Learning Approach to Online Unmanned Air Vehicle (UAV) for Target
Detection and Classification," Proc. SPIE Conference, Orlando, FL, April 2010.

K. C. Baumgartner, S. Ferrari, and T. A. Wettergren, “Robust Deployment of Ocean Sensor Networks,” 
IEEE Sensors Journal, Vol. 9, No. 9, pp. 1029-1048, 2009.

K. C. Baumgartner, S. Ferrari, and A. Rao, “Optimal Control of a Mobile Sensor Network for Cooperative 
Target Detection,” IEEE Journal of Oceanic Engineering, Vol. 34, No. 4, pp. 678-697, 2009.

G. Zhang, S. Ferrari, and M. Qian, “Information Roadmap Method for Robotic Sensor Path Planning,” 
Journal of Intelligent and Robotic Systems, Vol. 56, pp. 69-98, 2009.

S. Ferrari, R. Fierro, B. Perteet, C. Cai, and K. C. Baumgartner, “A Multi-Objective Optimization 
Approach to Detecting and Intercepting Dynamic Targets using Mobile Sensors, ” SIAM Journal on Control 
and Optimization, Vol. 48, No. 1, pp. 292-320, 2009.

S. Ferrari and C. Cai, “Information-Driven Search Strategies in the Board Game of CLUE®,” IEEE 
Transactions on Systems, Man, and Cybernetics - Part B, Vol. 39, No. 3, pp. 607-625, June 2009.

C. Cai and S. Ferrari, “Information-Driven Sensor Path Planning by Approximate Cell Decomposition,” 
IEEE Transactions on Systems, Man, and Cybernetics - Part B, Vol. 39, No. 3, pp. 672-689, June 2009.



10

19

References

S. Ferrari, “Multi-Objective Algebraic Synthesis of Neural Control Systems by Implicit Model Following,” 
IEEE Transactions on Neural Networks, Vol. 20, No. 3, pp. 406-419, March 2009.

S. Ferrari, R. Fierro, and D. Tolic, "A Geometric Optimization Approach to Tracking Maneuvering Tracking
Using a Heterogeneous Mobile Sensor Network," Proc. IEEE Conference on Decision and Control,
Shanghai, China, December 2009.

G. Zhang and S. Ferrari, "An Adaptive Artificial Potential Function Approach for Geometric Sensing," Proc.
IEEE Conference on Decision and Control, Shanghai, China, December 2009.

G. Di Muro and S. Ferrari, "Penalty Function Method for Exploratory Adaptive-Critic Neural Network
Control," Proc. Mediterranean Conference on Control and Automation (MED'09), Thessaloniki, Greece,
January 2009, pp. 1410-1414.

D. Tolic, R. Fierro, and S. Ferrari, "Cooperative multi-target tracking via hybrid modeling and geo- metric
optimization," Proc. Mediterranean Conference on Control and Automation (MED'09), Thessaloniki,
Greece, January 2009, pp. 440-445.

Ferrari S., Steck J. E, and Chandramohan R., “Adaptive Feedback Control by Constrained Approximate 
Dynamic Programming,” IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, Vol. 
38, No. 4, pp. 982-987, August 2008.

Baumgartner, K. C., and Ferrari, S., “A Geometric Approach to Analyzing Track Coverage in Sensor 
Networks”, IEEE Transactions on Computer, Vol. 57, No. 8, pp. 1113-1128, August 2008.

S. Ferrari and A. Vaghi, “Demining Sensor Modeling and Feature-level Fusion by Bayesian Networks,” 
IEEE Sensors Journal, Vol. 6, No. 2, pp. 471-483, April 2006.

PDFs AVAILABLE UPON REQUEST: sferrari@duke.edu 


